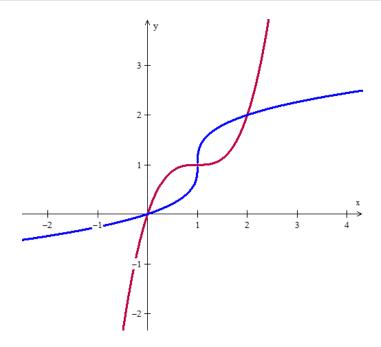
[UFES-CCE-DMAT-Prova1-Cálculo1-Equipe-Tarde, 17/09/14]

Gabarito

- 1. Considere $f(x) = (x-1)^3 + 1$.
 - (a) (1,0) Determine o domínio, a imagem, a raiz e o gráfico de f.

Solução: $Dm(f) = \mathbb{R}$; $Im(f) = \mathbb{R}$; 0 é a única raiz de f; gráfico de f está abaixo em vermelho.



(b) (1,0) Exiba a expressão de f^{-1} e esboce seu gráfico.

Solução: $f^{-1}(x) = \sqrt[3]{x-1} + 1$; o gráfico está acima em azul.

2. Calcule os seguintes limites:

(a)
$$(1,5) \lim_{x \to -\infty} \frac{x}{\sqrt{x^4 + 1}}$$

Solução: $\lim_{x \to -\infty} \frac{x}{\sqrt{x^4 + 1}} = \lim_{x \to -\infty} \frac{x}{x^2 \sqrt{1 + 1/x^4}} = \lim_{x \to -\infty} \frac{1}{x \sqrt{1 + 1/x^4}} = 0.$

(b) **(1,5)**
$$\lim_{x \to +\infty} \frac{\sin^2(x)}{x^2 + 1}$$

Solução: De $0 \le \frac{\sin^2(x)}{x^2+1} \le \frac{1}{x^2+1}$ e $\lim_{x\to +\infty} \frac{1}{x^2+1} = 0$, pelo Teorema do Sanduíche temos que $\lim_{x\to -\infty} \frac{\sin^2(x)}{x^2+1} = 0$.

(c) (1,5)
$$\lim_{x\to 1} \frac{\sqrt{5-x}-2}{\sqrt[3]{2-x}-1}$$

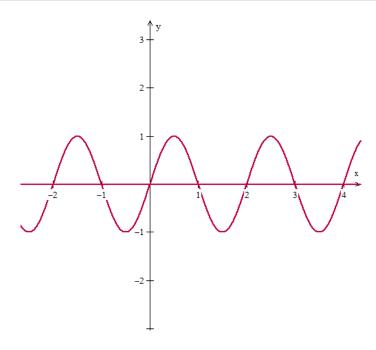
Solução: Fazendo a substituição $x=2-y^3$ o limite fica $\lim_{y\to 1}\frac{\sqrt{y^3+3}-2}{y-1}$. A solução deste é a seguinte:

$$\lim_{y \to 1} \frac{\sqrt{y^3 + 3} - 2}{y - 1} = \lim_{y \to 1} \frac{(\sqrt{y^3 + 3} - 2)(\sqrt{y^3 + 3} + 2)}{(y - 1)(\sqrt{y^3 + 3} + 2)} = \lim_{y \to 1} \frac{(y^3 - 1)}{(y - 1)(\sqrt{y^3 + 3} + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^2 + y + 1)}{(y - 1)(\sqrt{y^3 + 3} + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^2 + y + 1)}{(y - 1)(\sqrt{y^3 + 3} + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^2 + y + 1)}{(y - 1)(\sqrt{y^3 + 3} + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^2 + y + 1)}{(y - 1)(\sqrt{y^3 + 3} + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^2 + y + 1)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y^3 + 3 + 2)}{(y - 1)(y^3 + 3 + 2)} = \lim_{y \to 1} \frac{(y - 1)(y - 1)(y - 1)}{(y - 1)(y - 1)(y - 1)} = \lim_{y \to 1} \frac{(y - 1)(y - 1)(y - 1)}{(y - 1)(y - 1)(y - 1)} = \lim_{y \to 1} \frac{(y - 1)(y - 1)(y - 1)}{(y - 1)(y - 1)(y - 1)} = \lim_{y \to 1} \frac{(y - 1)(y - 1)(y - 1)}{(y - 1)(y - 1)} = \lim_{y \to 1} \frac{(y - 1)(y - 1)(y - 1)}{(y - 1)(y - 1)} = \lim_{y \to 1} \frac{(y - 1)(y - 1)(y - 1)}{(y - 1)(y - 1)} = \lim_{y \to 1} \frac{(y - 1)(y - 1)}{(y - 1)(y - 1)} = \lim_{y \to 1} \frac{(y - 1)(y - 1)}{(y - 1)(y - 1)} = \lim_{y \to 1} \frac{(y - 1)(y - 1)}{(y - 1)(y - 1)} = \lim_{y \to 1} \frac{(y - 1)(y - 1)}{(y - 1)(y - 1)} = \lim_{y \to 1} \frac{(y$$

$$\lim_{y \to 1} \frac{(y^2 + y + 1)}{(\sqrt{y^3 + 3} + 2)} = \frac{3}{4}.$$

3. (1,0) Exiba os pontos de continuidade da função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \begin{cases} sen(\pi x), & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$

Solução: Note que f oscila infinitas vezes do gráfico de $sen(\pi x)$ para a função nula em qualquer intervalo onde estas funções são distintas. Assim, nenhum limite lateral existe onde $sen(\pi x)$ não é nulo. Nos pontos onde $sen(\pi x)$ se anula os limites existem e é nulo. Com isso, os pontos de continuidade são as raízes de $sen(\pi x)$, ou seja, os números inteiros (ver figura abaixo).



4. (1,5) Prove que qualquer que seja o número a > 0 o polinômio $P(x) = 3x^8 - 5x^5 + x^2 - a$ possui pelo menos duas raízes reais.

Solução: Sabemos que P é contínua em \mathbb{R} . Note que P(0) = -a < 0 e que $\lim_{x \to \pm \infty} P(x) = +\infty$. Com isso, P assume valores positivos antes e depois de a. Assim, pelo Teorema do Valor Intermediário, P possui uma raiz antes de a e uma depois de a.

- 5. Responda V ou F, justificando suas respostas.
 - (a) (0,5) Se f é contínua em a, então $\lim_{x\to a} \frac{a}{f(x)}$ existe.

Solução: Falso. Considere $f(x)=(x-1)^2$. Assim, f é contínua em a=1 e $\lim_{x\to 1}\frac{1}{(x-1)^2}=+\infty$ não existe.

(b) (0,5) $f(x) = \frac{2 \cdot \arctan(x)}{x}$ é impar.

Solução: Falso. $f(-x) = \frac{2 \cdot \arctan(-x)}{-x} = \frac{-2 \cdot \arctan(x)}{-x} = \frac{2 \cdot \arctan(x)}{x} = f(x)$.